Search

 
11

<<< Electric Field and Gauss's Law Question Bank >>>

"My Lord, enable me to be grateful for Your favor which You have bestowed upon me and upon my parents and to work righteousness of which You will approve and make righteous for me my offspring. Indeed, I have repented to You, and indeed, I am of the Muslims."

"Our Lord, grant us from among our wives and offspring comfort to our eyes and make us an example for the righteous."

"My Lord, grant me wisdom and join me with the righteous. And grant me a reputation of honor among later generations. And place me among the inheritors of the Garden of Pleasure."

smile

📄 Print pdf
00971504825082
1

One of the following measurement units is equivalent to the electric field measurement unit

\[Kg.m.A^{-1}.s^{-2}\;\;\;\;\;\;-C\]

\[Kg.m.A^{-1}.s^{-3}\;\;\;\;\;\;-A\]

\[Kg.m.A^{-1}.s^{-1}\;\;\;\;\;\;-D\]

\[Kg.m.A^{-2}.s^{-2}\;\;\;\;\;\;-B\]

  • Click here to show the solution
  • Choose the correct answer






    2

    An electric field with intensity \[E=500\frac{N}{C}\] has an electron placed inside it. The electric force acting on the electron equals: \[q_e=1.6×10^{-19}C\]


    \[Fe=4×10^{-17} \;\;N\;\;\;\;\;\;-C\] Opposite to the field direction

    \[Fe=4×10^{-17} \;\;N\;\;\;\;\;\;-A\] In the field direction

    \[Fe=8×10^{-17} \;\;N\;\;\;\;\;\;-D\] Opposite to the field direction

    \[Fe=8×10^{-17} \;\;N\;\;\;\;\;\;-B\] In the field direction

  • Click here to show the solution
  • Choose the correct answer






    3

    In the figure below, two charges are on the same line \[q_1=+9\;\;nc\;\;\;\;\;\;\;\;q_2=?\] At point \[A\] the electric field is canceled. The magnitude and type of charge \[q_2\] equals

    \[q_2= - 3.2 ×10^{-7}\;\;c\;\;\;\;\;\;-C\]

    \[q_2= + 1.44 ×10^{-7}\;\;c\;\;\;\;\;\;-A\]

    \[q_2= -4.5 ×10^{-7}\;\;c;\;\;\;\;\;-D\]

    \[q_2= + 2.25 ×10^{-7}\;\;c\;\;\;\;\;\;-B\]

  • Click here to show the solution
  • Choose the correct answer






    4

    In the figure below, the field at point \[A\] was calculated \[E_{net}=500\frac{N}{C}\]
    and its direction is shown in the drawing. If the magnitude of the electric field produced by the first charge equals \[E_{1}=300\frac{N}{C}\]then the type and magnitude of the second charge equals

    \[q_2= - 3.24 ×10^{-9}\;\;c\;\;\;\;\;\;-C\]

    \[q_2= - 2.43 ×10^{-9}\;\;c\;\;\;\;\;\;-A\]

    \[q_2= + 1.78 ×10^{-9}\;\;c;\;\;\;\;\;-D\]

    \[q_2= + 5.67 ×10^{-9}\;\;c\;\;\;\;\;\;-B\]

  • Click here to show solution
  • Choose the correct answer






    5

    In the figure below, the field lines for three charges are drawn. One of the following answers is correct

    \[q_1(-)\;\;\;\;q_2(+)\;\;\;\;q_3(+) \;\;\;\;\;q_3>q_1>q_2\;\;\;\;\;\;-C\]

    \[q_1(+)\;\;\;\;q_2(-)\;\;\;\;q_3(-)\;\;\;\;\;q_1=q_2=q_3\;\;\;\;\;\;-A\]

    \[q_1(+)\;\;\;\;q_2(-)\;\;\;\;q_3(-) \;\;\;\;\;q_1>q_2=q_3\;\;\;\;\;\;-D\]

    \[q_1(+)\;\;\;\;q_2(-)\;\;\;\;q_3(-)\;\;\;\;\;q_2>q_1>q_3\;\;\;\;\;\;-B\]

  • Click here to show solution
  • Choose the correct answer






    6

    (1 ×10-10m ) A dipole with distance between its poles
    ( 0.4 m ) The field produced by the dipole was calculated at a point distant from the center of the dipole and along the dipole axis
    The field intensity was \[E= 9×10^{-18}\frac{N}{C}\]then the dipole charge equals

    \[q= 3.2 ×10^{-19}\;\;c\;\;\;\;\;\;-C\]

    \[q= 2.6 ×10^{-19}\;\;c\;\;\;\;\;\;-A\]

    \[q= 1.3 ×10^{-19}\;\;c;\;\;\;\;\;-D\]

    \[q= 6.4 ×10^{-19}\;\;c\;\;\;\;\;\;-B\]

  • Click here to show solution
  • Choose the correct answer


    Choose the correct answer






    7

    A positively charged particle is placed inside the field shown in the figure below. One of the following answers represents the motion of the particle:

    The particle moves with - C
    increasing acceleration

    The particle moves with - A
    constant velocity

    The particle moves with - D
    decreasing acceleration

    The particle moves with - B
    constant acceleration

  • Click here to show solution
  • Choose the correct answer






    8

    A ball with mass (5g) is dropped to the ground while charged with a charge of (5 µc). The uniform electric field vector that makes it balanced is:

    \[E= 1×10^3 \;\;N/C\;\;\;\;\downarrow\;\;\;\;\;\;-C\] Downward

    \[E= 9.8×10^3 \;\;N/C\;\;\;\;\downarrow\;\;\;\;\;\;-A\] Downward

    \[E= 1×10^3 \;\;N/C\;\;\;\;\uparrow\;\;\;\;\;\;-D\] Upward

    \[E= 9.8×10^3 \;\;N/C\;\;\;\;\uparrow\;\;\;\;\;\;-B\] Upward

  • Click here to show solution
  • Choose the correct answer






    9

    An electron is projected into a uniform electric field with intensity (E= 1 × 103N/C)
    directed towards the positive vertical axis as shown in the figure below
    with a speed of (𝜗=5 × 106m/s) horizontally
    and travels a horizontal distance of (8 cm).
    In the same time period, it will have a vertical displacement of:

    \[ ∆𝑌= 0.011 \;\;m\;\;\;\;\;\;-C\]

    \[ ∆𝑌= 0.033 \;\;m\;\;\;\;\;\;-A\]

    \[ ∆𝑌= 0.044 \;\;m\;\;\;\;\;\;-D\]

    \[ ∆𝑌= 0.022\;\;m\;\;\;\;\;\;-B\]

  • Click here to show solution
  • Choose the correct answer






    10

    One of the following shapes has zero torque for an electric dipole in a uniform electric field

  • Click here to show solution
  • Choose the correct answer






    11

    ( τ= 1.5 × 10-9N.m ) An electric dipole has maximum torque when
    (positive z-axis) and is directed along the
    (positive y-axis) in a uniform electric field directed along the
    ( E = 1 × 10-3N/C ) with magnitude

    \[P=1.5×10^{-6} \;\;c.m\;\;\;\;\;\;-C\] along the positive horizontal axis

    \[ P=1.5×10^{-8} \;\;c.m\;\;\;\;\;\;-A\] along the positive horizontal axis

    \[P=1.5×10^{-8} \;\;c.m\;\;\;\;\;\;-D\] along the negative horizontal axis

    \[P=1.5×10^{-6} \;\;c.m\;\;\;\;\;\;-B\] along the negative horizontal axis

  • Click here to show solution
  • Choose the correct answer






    12

    (0.3 m) An infinite wire has an electric field calculated at a point
    ( 2.5 × 103N/C ) The electric field magnitude was
    and direction is shown in the figure. The number of electrons gained or lost per unit length equals

    \[n=2.6×10^{11}\;\;\;\;\;\;-C\] Gained electrons

    \[ n=2.6×10^{11} \;\;\;\;\;\;-A\] Lost electrons

    \[n=3.4×10^{11}\;\;\;\;\;\;-D\] Gained electrons

    \[n=3.4×10^{11}\;\;\;\;\;\;-B\] Lost electrons

  • Click here to show solution
  • Choose the correct answer






    13

    One of the following units is a unit of electric flux

    \[Kg.m .A^{-1}.S^{-3}\;\;\;\;\;\;-C\]

    \[Kg.m^2 .A^{-1}.S^{-3}\;\;\;\;\;\;-A\]

    \[Kg.m^3 .A^{-1}.S^{-3}\;\;\;\;\;\;-D\]

    \[Kg.m^2 .A^{-1}.S^{-2}\;\;\;\;\;\;-B\]

  • Click here to show solution
  • Choose the correct answer






    14

    A spherical shell is charged with a charge of \[-4\;\;µc\] and a charge is placed inside it \[+4\;\;µc\]>then the internal charge \[q_1=?\] and external charge of the spherical shell \[q_2=?\] respectively

    \[q_1=+4\;µc \;\;\;\;\;q_2=+4\;µc\;\;\;\;\;\;-C\]

    \[q_1=0.0 \;\;\;\;\;q_2=0.0\;\;\;\;\;\;-A\]

    \[q_1=-4\;µc \;\;\;\;\;q_2=0.0\;\;\;\;\;\;-D\]

    \[q_1=-4\;µc \;\;\;\;\;q_2=+4\;µc\;\;\;\;\;\;-B\]

  • Click here to show solution
  • Choose the correct answer






    15

    ( A ) Two infinite wires in length with charge densities and dimensions shown in the figure below. The point has a field intensity equal to

    \[ E= 4200 \;\;N/C\;\;\;\;\;\longrightarrow\;\;\;\;\;\;-C\] To the right

    \[ E= 2800 \;\;N/C\;\;\;\;\;\longleftarrow \;\;\;\;\;\;-A\] To the left

    \[E= 4800 \;\;N/C\;\;\;\;\;\longrightarrow\;\;\;\;\;\;-D\] To the right

    \[E= 3500 \;\;N/C\;\;\;\;\;\longleftarrow\;\;\;\;\;\;-B\] To the left

  • Click here to show solution
  • Choose the correct answer






    16

    Two infinite parallel conducting plates charged with equal charge density. One of the following answers is correct:

    \[ EA=EB=EC=ED \;\;\;\;\;\;-C\]

    \[EA=EC=0 \;\;\;\;\;, \;\;\;\;\;EB=ED≠0\;\;\;\;\;\;-A\]

    \[ EA=EB \;\;\;\;\;, \;\;\;\;\;ED=EC\;\;\;\;\;\;-D\]

    \[EA>EC \;\;\;\;\;, \;\;\;\;\;EB=ED \;\;\;\;\;\;-B\]

  • Click here to show solution
  • Choose the correct answer






    17

    Two infinite unconnected plates with the same charge. The electric field at point A was calculated to be \[E= 1×10^3\frac{N}{C}\]. The charge density on each plate is:

    \[𝛿= 3.6 ×10^{-9} \;\;c/m^2\;\;\;\;\;\;-C\]

    \[𝛿= 3.9×10^{-8} \;\;c/m^2\;\;\;\;\;\;-A\]

    \[𝛿= 4.8×10^{-9} \;\;c/m^2\;\;\;\;\;\;-D\]

    \[𝛿= 8.85×10^{-9} \;\;c/m^2\;\;\;\;\;\;-B\]

  • Click here to show the solution
  • Choose the correct answer






    17

    Two infinite unconnected plates with the same charge. The electric field at point A was calculated to be \[E= 1×10^3\frac{N}{C}\]. The charge density on each plate is:

    \[𝛿= 3.6 ×10^{-9} \;\;c/m^2\;\;\;\;\;\;-C\]

    \[𝛿= 3.9×10^{-8} \;\;c/m^2\;\;\;\;\;\;-A\]

    \[𝛿= 4.8×10^{-9} \;\;c/m^2\;\;\;\;\;\;-D\]

    \[𝛿= 8.85×10^{-9} \;\;c/m^2\;\;\;\;\;\;-B\]

  • Click here to show the solution
  • Choose the correct answer






    18

    An infinite conducting plate with a charge density of \[6 × 10^{-6} \;\;C/m^2\] was left. A positively charged sphere with a charge of \[+4\;\;nc\] and a mass of \[9 \;\;g\] falls towards the plate. The sphere moves with an acceleration of

    \[ a=6.37 \;\;m/s^2\;\;\;\;\;\uparrow \;\;\;\;\;\;-C\] Upwards

    \[ a=3.92 \;\;m/s^2\;\;\;\;\;\uparrow \;\;\;\;\;\;-A\] Upwards

    \[a=4.52 \;\;m/s^2\;\;\;\;\;\downarrow \;\;\;\;\;\;-D\] Downwards

    \[a=9.48 \;\;m/s^2\;\;\;\;\;\downarrow \;\;\;\;\;\;-B\] Downwards

  • Click here to show the solution
  • Choose the correct answer






    19

    An uncharged spherical shell with an inner radius \[0.5\;] and an outer radius \[0.7\; m\] A point charge was placed inside it as shown in the figure below with a magnitude of \[-6\;µc \] at its center. The electric field intensity at a point located at a distance of \[0.6\; m \]

    \[ E=0.0\;\;\;\;\;\;-C\]

    \[ E = 2.3 ×10^5 \;\;N/C \;\;\;\;\;\;-A\]

    \[ E = 1.5 ×10^5 \;\;N/C\;\;\;\;\;\;-D\]

    \[ E = 4.6 ×10^5 \;\;N/C\;\;\;\;\;\;-B\]

  • Click here to show the solution
  • Choose the correct answer






    20

    The relationship between the electric field and the distance from the surface of a hollow conducting sphere was plotted, resulting in the following graph. The conductor is charged with a charge of

    \[q= 1.34×10^{-19} \;\;c\;\;\;\;\;\;-C\]

    \[ q= 2.56×10^{-19} \;\;c\;\;\;\;\;\;-A\]

    \[q= 2.14×10^{-19} \;\;c\;\;\;\;\;\;-D\]

    \[q= 1.78×10^{-19} \;\;c\;\;\;\;\;\;-B\]

  • Click here to show the solution
  • Choose the correct answer






    21

    The relationship between the electric field and the distance from the center of a charged sphere
    with a non-conducting solid was plotted, resulting in the following graph. The magnitude of the electric field at a point located at a distance \[0.15\;m\] from the center of the sphere is equivalent to

    \[E=2800 \;\;N/C\;\;\;\;\;\;-C\]

    \[E=3000 \;\;N/C\;\;\;\;\;\;-A\]

    \[E=2700 \;\;N/C\;\;\;\;\;\;-D\]

    \[E=2900 \;\;N/C\;\;\;\;\;\;-B\]

  • Click here to show the solution
  • Choose the correct answer






    22

    The relationship between the electric field and distance from the center
    of a uniformly charged solid non-conducting sphere was plotted,
    resulting in the following graph.
    The amount of charge contained within a radius of \[0.1\;m\] of the sphere is equivalent to:

    \[q= 2.2×10^{-9} \;\;c\;\;\;\;\;\;-C\]

    \[ q= 2.45×10^{-9} \;\;c\;\;\;\;\;\;-A\]

    \[q= 7.45×10^{-9} \;\;c\;\;\;\;\;\;-D\]

    \[q= 1.78×10^{-9} \;\;c\;\;\;\;\;\;-B\]

  • Click here to show solution
  • Choose the correct answer






    23

    A solid non-conducting sphere is uniformly charged with radius \[R=0.5\;\; m\]. The field at a point \[r=0.3\;\; m\] from the center of the sphere was calculated to be \[E=4×10^3\frac{N}{C}\]. The charge of the sphere is equivalent to:

    \[q= 3.54×10^{-6} \;\;c\;\;\;\;\;\;-C\]

    \[ q= 5.71×10^{-6} \;\;c\;\;\;\;\;\;-A\]

    \[q= 1.85×10^{-6} \;\;c\;\;\;\;\;\;-D\]

    \[q= 6.28×10^{-6} \;\;c\;\;\;\;\;\;-B\]

  • Click here to show solution
  • Choose the correct answer






    24

    A spherical shell has a charge of \[-7 \;\;µc \], inner radius \[2 \;\;m\] and outer radius \[4\;\;M\]. The electric field at a point was calculated to be \[E= 3 ×10^3\;\;N/C\] and directed towards the shell. The charge inside the spherical shell is equivalent to:

    \[q= +1.67 ×10^{-6} \;\;c\;\;\;\;\;\;-C\]

    \[ q= +5.33 ×10^{-6} \;\;c\;\;\;\;\;\;-A\]

    \[q= -1.67×10^{-6} \;\;c\;\;\;\;\;\;-D\]

    \[q= -5.33×10^{-6} \;\;c\;\;\;\;\;\;-B\]

  • Click here to show solution
  • Choose the correct answer






    25

    An electric charge generates an electric field around it. The electric field at point \[A\] was calculated to be \[ E= 6×10^4\;\;N/C \]. The electric field at point \[B\] was calculated to be \[ E= 3×10^4\;\;N/C \]. The ratio between the distances \[\frac{r_A}{r_B}\] is equal to:

    \[\frac{r_A}{r_B}=0.5\;\;\;\;\;\;-C\]

    \[\frac{r_A}{r_B}=0.4\;\;\;\;\;\;-A\]

    \[\frac{r_A}{r_B}=0.25\;\;\;\;\;\;-D\]

    \[\frac{r_A}{r_B}=0.7\;\;\;\;\;\;-B\]

  • Click here to show solution
  • Choose the correct answer






    26

    In the figure below, a point charge generates an electric field around it. The ratio between the field at point \[A\] to the field at point \[B\] is equal to:

    \[\frac{E_A}{E_B}=9\;\;\;\;\;\;-C\]

    \[\frac{E_A}{E_B}=4\;\;\;\;\;\;-A\]

    \[\frac{E_A}{E_B}=16\;\;\;\;\;\;-D\]

    \[\frac{E_A}{E_B}=3\;\;\;\;\;\;-B\]

  • Click here to show solution
  • Choose the correct answer






    27

    The figure shows four Gaussian surfaces surrounding charge distributions. Which Gaussian surface has no electric flux through it?

  • Click here to show solution
  • Choose the correct answer






    28

    A Gaussian surface shaped like a bean is placed in four different regions of an electric field. This is illustrated by the field lines below.

    In which case is the total electric flux through the closed surface the highest?

  • Click here to show the solution
  • Choose the correct answer






    29

    A positive point charge (+4q)
    and a negative point charge (-3q) are placed inside a conducting sphere and a negative point charge is placed outside the sphere with magnitude
    One of the following answers correctly represents the results of Gauss's law

    Both charges affect with the same -C
    force but in opposite directions

    The charge inside the conductor -A
    affects with a greater force on
    the charge outside the conductor

    The charge inside the conductor will -D
    not be affected by a force and the charge
    outside the conductor is affected by a force

    The charge outside the conductor -B
    affects with a greater force on
    the charge inside the conductor

  • Click here to show the solution
  • Choose the correct answer






    30

    (∅=3 ×102N.m2/c ) A charge was placed inside a spherical surface and the flux on the surface was calculated to be
    If the radius of the spherical surface is doubled, the flux on the new surface becomes

    \[∅= 6 ×10^2 \;\;N.m^2/C\;\;\;\;\;\;-C\]

    \[ ∅= 12 ×10^2 \;\;N.m^2/C\;\;\;\;\;\;-A\]

    \[∅= 3 ×10^2 \;\;N.m^2/C\;\;\;\;\;\;-D\]

    \[∅= 1.5×10^2 \;\;N.m^2/C\;\;\;\;\;\;-B\]

  • Click here to show the solution
  • Choose the correct answer






    31

    An electric field with intensity given by the relation \[E=8\hat{X}+3\hat{Y}+4\hat{Z}(\frac{N.m^2}{c})\]
    (10 cm) The flux through the right side surface of a cube with edge length
    equals

    \[∅= 6 ×10^{-2} \;\;N.m^2/C\;\;\;\;\;\;-C\]

    \[ ∅= 8 ×10^{-2 }\;\;N.m^2/C\;\;\;\;\;\;-A\]

    \[∅= 2 ×10^{-2} \;\;N.m^2/C\;\;\;\;\;\;-D\]

    \[∅= 4×10^{-2} \;\;N.m^2/C\;\;\;\;\;\;-B\]

  • Click here to show solution
  • Choose the correct answer






    32

    A hollow conducting sphere with radius \[0.2\;\;m\] was uniformly charged, losing a number of electrons equal to \[n= 5×10^{12}\] electrons. The charge density on the conductor's surface equals:
    Given that \[q_e=1.6×10^{-19} c\]

    \[𝛿= 1.6 ×10^{-6} \;\;c/m^2\;\;\;\;\;\;-C\]

    \[𝛿= 4.8 ×10^{-6} \;\;c/m^2\;\;\;\;\;\;-A\]

    \[𝛿= 3.6 ×10^{-6} \;\;c/m^2\;\;\;\;\;\;-D\]

    \[𝛿= 6 ×10^{-6} \;\;c/m^2\;\;\;\;\;\;-B\]

  • Click here to show solution
  • Choose the correct answer






    33

    A semi-cylinder made of insulating material with small base radius (0.1 m) and large base radius (0.2 m) was placed in a uniform electric field as shown in the figure below with intensity \[500\;\;N/C\]. The flux passing through the lateral surface of the semi-cylinder equals:

    \[∅=47.1 \;\;N.m^2/C\;\;\;\;\;\;-C\]

    \[ ∅=0.0 \;\;\;\;\;\;-A\]

    \[∅= 25.3\;\;N.m^2/C\;\;\;\;\;\;-D\]

    \[∅= - 35.2 \;\;N.m^2/C\;\;\;\;\;\;-B\]

  • Click here to show solution
  • Choose the correct answer






    34

    A cube has a point charge at its center with a magnitude of \[8 ×10^{-9}c\]. The flux through the top and bottom surfaces is equal to \[ 𝓔_0=8.85 ×10^{-12}C.m/v\]

    \[∅= 432 \;\;N.m^2/C\;\;\;\;\;\;-C\]

    \[ ∅=151 \;\;N.m^2 \;\;\;\;\;\;-A\]

    \[∅= 512\;\;N.m^2/C\;\;\;\;\;\;-D\]

    \[∅= - 301 \;\;N.m^2/C\;\;\;\;\;\;-B\]

  • Click here to show the solution
  • Choose the correct answer






    Solve the following problems

    1

    Two point charges on a straight line each with magnitude \[q_1=8\;\;nc\;\;\;\;\;\;\;\;\;\; q_2=?\]The electric field was calculated at point \[A\] and its magnitude was \[E_{net}=500 \;\;N/C\]From the figure information and previous data What is the type of \[q_2\] \[........................................................................................\] \[........................................................................................\] \[........................................................................................\] Calculate the magnitude of charge \[q_2\] \[........................................................................................\] \[........................................................................................\] \[........................................................................................\] \[........................................................................................\] \[........................................................................................\]

  • Click here to show solution method
  • 2

    A pith ball with mass \[m=5 \;\;g\] is charged and suspended by an inextensible thread fixed to the ceiling. It was placed in a uniform electric field with intensity \[E=1×10^3 \;\;N/C\] causing the ball to deflect to the right as shown in the figure such that the thread makes an angle with the vertical axis of \[𝜃=8^0\] Determine the type of charge on the ball \[........................................................................................\] \[........................................................................................\] Calculate the magnitude of the ball's charge \[........................................................................................\] \[........................................................................................\] \[........................................................................................\] \[........................................................................................\] \[........................................................................................\]

  • Click here to show solution method
  • 3

    A spherical conductor with radius \[R=0.05 \;\; m\] has a quantity of charge distributed uniformly on its surface with surface charge density of \[𝜎=8.5\;\;nc/m^2\]Calculate the electric field at the surface of this conductor

    \[........................................................................................\] \[........................................................................................\] \[........................................................................................\] \[........................................................................................\] \[........................................................................................\]
  • Click here to show solution method
  • 4

    A spherical shell with outer and inner radii \[R_1=0.5 \;\;m \;\;\;\;\;\;\;R_2=0.8 \;\;m \] and shell charge \[6\;\;µc\] with a charge placed at its center \[-4\;\;µc\]

    Calculate the field at distance \[r_1=0.4\;\;m\] from the shell's center \[...................................\;\;\;\;\;\;\;...................................\] \[...................................\;\;\;\;\;\;\;...................................\]\[...................................\;\;\;\;\;\;\;...................................\] Calculate the field at distance \[r_2=0.7\;\;m\] from the shell's center \[...................................\;\;\;\;\;\;\;...................................\] \[...................................\;\;\;\;\;\;\;...................................\]\[...................................\;\;\;\;\;\;\;...................................\] Calculate the field at distance \[r_3=1\;\;m\] from the shell's center \[...................................\;\;\;\;\;\;\;...................................\] \[...................................\;\;\;\;\;\;\;...................................\]\[...................................\;\;\;\;\;\;\;...................................\]
  • Click here to show solution method
  • 5

    A cube with side length \[0.3\;\;m\]
    was placed in a uniform electric field directed towards the positive horizontal axis
    with intensity \[E=200\frac{N}{C}\] Calculate the flux through each surface and the total flux

    \[.....................................\;\;\;\;............................................\] \[.....................................\;\;\;\;............................................\] \[.....................................\;\;\;\;............................................\] \[.....................................\;\;\;\;............................................\] \[.....................................\;\;\;\;............................................\] A point charge was placed at the center of the previous cube inside the electric field region with magnitude \[q=20 \;\;pc\] Calculate the flux through the left side surface \[𝜺_𝟎=8.85 ×10^{-12}\;\;\frac{c^2}{N.m^2}\]
    \[.....................................\;\;\;\;............................................\] \[.....................................\;\;\;\;............................................\] \[.....................................\;\;\;\;............................................\]
  • Click here to show solution method
  • 6

    A cube containing 12 protons, 13 neutrons, and some electrons
    The measured electric flux through the cube was \[∅=9.05×10^{-8}\;N.m^2/c\] Calculate the magnitude of charge inside the cube Given that \[𝜀_0=8.85×10^{−12}\;c^2/N.m^2\]

    \[.....................................\;\;\;\;............................................\] \[.....................................\;\;\;\;............................................\] Calculate the number of electrons inside the cube \[.....................................\;\;\;\;............................................\] \[.....................................\;\;\;\;............................................\]
  • Click here to show solution method
  • Write a comment, and if there is mistake, write and specify its location

    No comments:

    Post a Comment

    🧮 Calculator
    🗑️
    ✏️ قلم